Mit der Fluoreszenzmikroskopie den Ausfall der Biogasanlage verhindern
Biogasanlagen bieten beste Voraussetzungen, um aus Gülle Biogas zu erzeugen und aus dem Gärrest einen ökologisch gut verwertbaren Dünger zu gewinnen. In der modernen Tierhaltung ist jedoch der Einsatz von antibakteriellen Wirkstoffen oder Arzneimitteln zur Sicherung der Tiergesundheit und Hygiene manchmal unerlässlich. Diese Wirkstoffe dürfen nicht in zu großen Mengen in die Biogasanlage gelangen, denn hier entfalten sie ihre antibakterielle und hemmende Wirkung auf die im Fermenter lebenden Mikroorganismen. Dies bremst die Gärtätigkeit und verlangsamt und mindert die Gasproduktion und -qualität. Im schlimmsten Fall kommt der Gärprozess zum Erliegen und das Fermentermaterial muss ausgetauscht werden. Der wirtschaftliche Schaden kann bei großen Anlagen mehrere 10.000 Euro betragen. Um dies zu vermeiden, können Substrate oder Güllen, bei denen ein Verdacht auf das Vorhandensein von Hemmstoffen besteht, im Labor mittels Fluoreszenzmikroskopie untersucht werden. Auch die mikrobielle Zusammensetzung des Fermentermaterials kann unter Abgleich der Inputstoff-Zusammensetzung mit Referenzanlagen verglichen werden. Abweichungen können frühzeitig identifiziert und gezielte Gegenmaßnahmen rechtzeitig ergriffen werden.
Exkurs: Welche Mikroorganismen sind an der Bildung von Biogas und Methan beteiligt?
Der Abbau von Biomasse erfolgt durch eine Vielzahl von Mikroorganismen auf unterschiedlichen Stoffwechselwegen bis zur vollständigen Umsetzung zu Kohlendioxid und Methan. Die beteiligten Mikroorganismen lassen sich in zwei Gruppen unterteilen. Die Gruppe 1 besteht aus Bakterien, die für den Abbau von hochmolekularen Verbindungen wie Zellulose und für die Vergärung von niedermolekularen Verbindungen wie Zuckern zu organischen Säuren verantwortlich sind. Organismen dieser Gruppe machen mit 75 bis 95 % den Hauptanteil aller Mikroorganismen im Biogas-Fermenter aus und werden als Zellulose-Abbauer und Säurebildner bezeichnet. Die Gruppe 2 der Mikroorganismen ist direkt für die Bildung von Methan verantwortlich. Sie stellt mit 5 bis 25 % den kleineren Teil der am anaeroben Abbau beteiligten Organismen. Vertreter dieser Gruppe werden als methanbildende Mikroorganismen bezeichnet.
Wie funktioniert die fluoreszenzmikroskopische Analyse?
Die quantitative Erfassung der am Gärprozess beteiligten Organismengruppen erfolgt durch fluoreszenzmikroskopische Analyse der Mikroorganismen. Aufgrund der hohen Anzahl von Mikroorganismen in Biogasanlagen (zum Teil über 100 Billiarden Mikroorganismen pro Kubikmeter) werden die ermittelten Zellzahlen auf einen Milliliter Fermentermaterial bezogen. Durch die Auswertung der Zusammensetzung der verschiedenen Methanbildner, die in der Gruppe 2 vertreten sind, können Veränderungen im Zusammenleben der methanbildenden Population erfasst werden.
Fluoreszenzmikroskopische Aufnahme einer Biogasanlage mit den Substraten Mais, Rindermist und Gülle. Bakterien erscheinen in blauer Färbung, Methanbildner werden gelb bis orange dargestellt.
Die beispielhafte fluoreszenzmikroskopische Aufnahme zeigt die mikrobielle Lebensgemeinschaft einer Probe bei 400-facher Vergrößerung. Die Probe wurde verdünnt und mit Licht verschiedener Wellenlängen angeregt. Durch einen Fluoreszenzfarbstoff erscheinen die zelluloseabbauenden und säurebildenden Organismen im Bild blau. Methan-bildende Zellen werden durch Licht mit einer Wellenlänge von 420 nm zur Eigenfluoreszenz angeregt und hier in Orange bis gelb dargestellt.
Die festgestellten Zellzahlen der in der Probe gefundenen Mikroorganismen werden mit einer Datenbank abgeglichen. Die Datenbank erfasst die Ergebnisse mehrjähriger Untersuchungen an unterschiedlichsten Biogasanlagen im In- und Ausland, biochemische Prozesszustände und Inputstoffe wie un-/belastete Gülle. Auf diese Weise können Abweichungen zu den SOLL-Zellzahlen und SOLL-Populationszusammensetzungen festgestellt werden. Im Zusammenspiel mit weiteren prozessbiologischen Parametern wie dem FOS/TAC-Verhältnis, den Gärsäurekonzentrationen, der Spurenelementuntersuchung oder der Viskositätsbestimmung ergibt sich ein tieferer Einblick in die Fermenterbiologie. Abweichungen aufgrund eines Hemmstoffeintrags können so identifiziert werden und gezielte Gegenmaßnahmen ergriffen werden.
Fazit: Fluoreszenzmikroskopie zur Optimierung der Gärprozesse
Biogasanlagen-Betreiber sind tagtäglich mit der Auswahl der ihnen angebotenen Inputstoffe oder unterschiedlichsten Prozesshilfsstoffe konfrontiert. Neben wirtschaftlichen Betrachtungen und der möglichen Gasausbeute ist die Unbedenklichkeit neuer Inputstoffe für die Fermenterbiologie eine wiederkehrende Fragestellung. Eine Erfassung des IST-Zustandes der mikrobiellen Aktivität mittels Fluoreszenzmikroskopie im Fermenter vor dem Einsatz eines neuen oder unbekannten Inputstoffs kann prozessbegleitend Anhaltspunkte zu Änderungen der Prozessstabilität liefern.
Prozessbiologische Betreuung aus dem Labor
Für die Kunden der MT Energy Service aus Zeven, einem BGA-Servicespezialisten, spielt das hauseigene Labor deswegen eine zentrale Rolle bei der kontinuierlichen Gewährleistung der Anlagenleistung. Das MTE Labor führt nicht nur fluoreszenzmikroskopische Analysen durch, sondern berät auch bei der Problemlösung und Ursachenbekämpfung.
Autor: Dr. Schöpfer
Weitere Informationen unter www.mte-service.de