Mit der Fluoreszenzmikroskopie den Ausfall der Biogasanlage verhindern

Biogasanlagen bieten beste Voraussetzungen, um aus Gülle Biogas zu erzeugen und aus dem Gärrest einen ökologisch gut verwertbaren Dünger zu gewinnen. In der modernen Tierhaltung ist jedoch der Einsatz von antibakteriellen Wirkstoffen oder Arzneimitteln zur Sicherung der Tiergesundheit und Hygiene manchmal unerlässlich. Diese Wirkstoffe dürfen nicht in zu großen Mengen in die Biogasanlage gelangen, denn hier entfalten sie ihre antibakterielle und hemmende Wirkung auf die im Fermenter lebenden Mikroorganismen. Dies bremst die Gärtätigkeit und verlangsamt und mindert die Gasproduktion und -qualität. Im schlimmsten Fall kommt der Gärprozess zum Erliegen und das Fermentermaterial muss ausgetauscht werden. Der wirtschaftliche Schaden kann bei großen Anlagen mehrere 10.000 Euro betragen. Um dies zu vermeiden, können Substrate oder Güllen, bei denen ein Verdacht auf das Vorhandensein von Hemmstoffen besteht, im Labor mittels Fluoreszenzmikroskopie untersucht werden. Auch die mikrobielle Zusammensetzung des Fermentermaterials kann unter Abgleich der Inputstoff-Zusammensetzung mit Referenzanlagen verglichen werden. Abweichungen können frühzeitig identifiziert und gezielte Gegenmaßnahmen rechtzeitig ergriffen werden.

 

Exkurs: Welche Mikroorganismen sind an der Bildung von Biogas und Methan beteiligt?

 

Der Abbau von Biomasse erfolgt durch eine Vielzahl von Mikroorganismen auf unterschiedlichen Stoffwechselwegen bis zur vollständigen Umsetzung zu Kohlendioxid und Methan. Die beteiligten Mikroorganismen lassen sich in zwei Gruppen unterteilen. Die Gruppe 1 besteht aus Bakterien, die für den Abbau von hochmolekularen Verbindungen wie Zellulose und für die Vergärung von niedermolekularen Verbindungen wie Zuckern zu organischen Säuren verantwortlich sind. Organismen dieser Gruppe machen mit 75 bis 95 % den Hauptanteil aller Mikroorganismen im Biogas-Fermenter aus und werden als Zellulose-Abbauer und Säurebildner bezeichnet. Die Gruppe 2 der Mikroorganismen ist direkt für die Bildung von Methan verantwortlich. Sie stellt mit 5 bis 25 % den kleineren Teil der am anaeroben Abbau beteiligten Organismen. Vertreter dieser Gruppe werden als methanbildende Mikroorganismen bezeichnet.

 

Wie funktioniert die fluoreszenzmikroskopische Analyse?

Die quantitative Erfassung der am Gärprozess beteiligten Organismengruppen erfolgt durch fluoreszenzmikroskopische Analyse der Mikroorganismen. Aufgrund der hohen Anzahl von Mikroorganismen in Biogasanlagen (zum Teil über 100 Billiarden Mikroorganismen pro Kubikmeter) werden die ermittelten Zellzahlen auf einen Milliliter Fermentermaterial bezogen. Durch die Auswertung der Zusammensetzung der verschiedenen Methanbildner, die in der Gruppe 2 vertreten sind, können Veränderungen im Zusammenleben der methanbildenden Population erfasst werden.

Fluoreszenzmikroskopische Aufnahme einer Biogasanlage mit den Substraten Mais, Rindermist und Gülle. Bakterien erscheinen in blauer Färbung, Methanbildner werden gelb bis orange dargestellt.

Die beispielhafte fluoreszenzmikroskopische Aufnahme zeigt die mikrobielle Lebensgemeinschaft einer Probe bei 400-facher Vergrößerung. Die Probe wurde verdünnt und mit Licht verschiedener Wellenlängen angeregt. Durch einen Fluoreszenzfarbstoff erscheinen die zelluloseabbauenden und säurebildenden Organismen im Bild blau. Methan-bildende Zellen werden durch Licht mit einer Wellenlänge von 420 nm zur Eigenfluoreszenz angeregt und hier in Orange bis gelb dargestellt.

 

Die festgestellten Zellzahlen der in der Probe gefundenen Mikroorganismen werden mit einer Datenbank abgeglichen. Die Datenbank erfasst die Ergebnisse mehrjähriger Untersuchungen an unterschiedlichsten Biogasanlagen im In- und Ausland, biochemische Prozesszustände und Inputstoffe wie un-/belastete Gülle. Auf diese Weise können Abweichungen zu den SOLL-Zellzahlen und SOLL-Populationszusammensetzungen festgestellt werden. Im Zusammenspiel mit weiteren prozessbiologischen Parametern wie dem FOS/TAC-Verhältnis, den Gärsäurekonzentrationen, der Spurenelementuntersuchung oder der Viskositätsbestimmung ergibt sich ein tieferer Einblick in die Fermenterbiologie. Abweichungen aufgrund eines Hemmstoffeintrags können so identifiziert werden und gezielte Gegenmaßnahmen ergriffen werden.

  

Fazit: Fluoreszenzmikroskopie zur Optimierung der Gärprozesse

Biogasanlagen-Betreiber sind tagtäglich mit der Auswahl der ihnen angebotenen Inputstoffe oder unterschiedlichsten Prozesshilfsstoffe konfrontiert. Neben wirtschaftlichen Betrachtungen und der möglichen Gasausbeute ist die Unbedenklichkeit neuer Inputstoffe für die Fermenterbiologie eine wiederkehrende Fragestellung. Eine Erfassung des IST-Zustandes der mikrobiellen Aktivität mittels Fluoreszenzmikroskopie im Fermenter vor dem Einsatz eines neuen oder unbekannten Inputstoffs kann prozessbegleitend Anhaltspunkte zu Änderungen der Prozessstabilität liefern.

 

Prozessbiologische Betreuung aus dem Labor

Für die Kunden der MT Energy Service aus Zeven, einem BGA-Servicespezialisten, spielt das hauseigene Labor deswegen eine zentrale Rolle bei der kontinuierlichen Gewährleistung der Anlagenleistung. Das MTE Labor führt nicht nur fluoreszenzmikroskopische Analysen durch, sondern berät auch bei der Problemlösung und Ursachenbekämpfung.

Autor: Dr. Schöpfer

Weitere Informationen unter www.mte-service.de

Read More

Löslichkeit von Cobalt im Biogas Prozess: Ein Schlüsselelement für Effizienz und Stabilität

Einführung in die Rolle von Cobalt im Biogas-Prozess

Cobalt, ein essenzielles Mikroelement in der Biogasproduktion, spielt eine zentrale Rolle bei der Methanogenese, dem Prozess der Methanbildung. Die Löslichkeit von Cobalt ist dabei entscheidend, da sie die Verfügbarkeit dieses Schlüsselelements für die mikrobiellen Gemeinschaften im Biogasreaktor bestimmt. Trotz seiner Bedeutung wird der Bedarf an löslichem Cobalt oft unterschätzt, was zu einer suboptimalen Biogasproduktion führen kann.

Die Grenzen der herkömmlichen Spurenelementanalyse

Lange Zeit galt die Ermittlung des Gesamtinhalts an Spurenelementen als ausreichend für die Beurteilung der Nährstoffverfügbarkeit im Biogasprozess. Diese Sichtweise hat sich jedoch als unzureichend erwiesen, da sie nicht die spezifische Löslichkeit und Bioverfügbarkeit von Elementen wie Cobalt berücksichtigt. Es ist daher notwendig, über herkömmliche Methoden hinauszugehen und die löslichen Anteile direkt zu bestimmen.

Neuartige Methode zur Bestimmung des löslichen Cobalts

Die Bedeutung einer präzisen Analyse des löslichen Cobalts wird durch die Arbeit von Institutionen wie der Lufa Oldenburg unter der Leitung von Dr. Bischoff hervorgehoben. Ihre Entwicklungen, wie die eigens erstellte Hausmethode, ermöglicht eine genauere Bestimmung des löslichen Cobaltanteils und bietet damit eine solide Grundlage für die Optimierung des Biogas-Prozesses.

Quellen von Cobalt im Biogas-Prozess

Natürliche Quellen von Cobalt im Biogas-Prozess umfassen Mist, Gülle und Hühnertrockenkot. Diese Substrate können jedoch aufgrund variabler Zusammensetzungen und Behandlungsverfahren unterschiedliche Mengen an bioverfügbarem Cobalt enthalten. Zudem kann eine Unterversorgung durch geringere Zusätze in Futtermitteln entstehen, was die Notwendigkeit einer gezielten Supplementierung unterstreicht.

Cobalt als Schlüsselelement für einen stabilen Biogas-Prozess

Die Löslichkeit von Cobalt ist entscheidend für einen stabilen Biogas-Prozess. Eine ausreichende Versorgung mit löslichem Cobalt unterstützt nicht nur die Methanproduktion, sondern fördert auch die Gesundheit und Effizienz der mikrobiellen Gemeinschaften. Cobalt muss daher in einer Form zugesetzt werden, die seine Löslichkeit und Bioverfügbarkeit maximiert. Sprechen Sie uns an, wir haben genau das richtige Produkt für Sie.

Techniken zur Optimierung der Cobalt-Löslichkeit

Eine der effektivsten Methoden zur Optimierung der Cobalt-Löslichkeit ist die Chelatisierung. Durch die Bildung stabiler Komplexe kann Cobalt effizienter von den Mikroorganismen verstoffwechselt werden. Weiterhin ist die Interaktion von Cobalt mit Schwefel von Bedeutung, da diese Verbindungen Cobalt im Substrat fixieren und seine Verfügbarkeit beeinflussen können.

Fallstudien und Praxisbeispiele

Praxisbeispiele aus der Biogasbranche zeigen, wie durch gezielte Anpassungen und Supplementierungen die Cobalt-Löslichkeit erfolgreich optimiert wurde. Diese Erfahrungen bieten wertvolle Einblicke und bewährte Praktiken für Biogasanlagenbetreiber.

Die wirtschaftlichen Auswirkungen der Cobalt-Optimierung

Die Optimierung der Cobalt-Löslichkeit trägt nicht nur zur Stabilität des Biogas-Prozesses bei, sondern kann auch erhebliche wirtschaftliche Vorteile bieten. Durch die Steigerung der Methanproduktion und die Verbesserung der Prozesseffizienz können Betreiber von Biogasanlagen ihre Rentabilität signifikant erhöhen.

Häufig gestellte Fragen (FAQs) zur Cobalt-Löslichkeit

Warum ist Cobalt wichtig für den Biogas-Prozess?

„Cobalt ist ein essentielles Spurenelement, das für die Aktivität der Methan bildenden Mikroorganismen notwendig ist. Eine angemessene Versorgung mit löslichem Cobalt kann die Methanproduktion signifikant steigern und zur Stabilität des Biogas-Prozesses beitragen.“

Wie beeinflusst die Form von Cobalt seine Löslichkeit und Verfügbarkeit im Biogas-Prozess?

„Die Löslichkeit von Cobalt wird durch seine chemische Form beeinflusst. Cobalt, das in chelatisierter Form vorliegt, ist leichter löslich und kann effizienter von Mikroorganismen aufgenommen werden als nicht-chelatisiertes Cobalt.“

Kann die Cobalt-Versorgung durch Standard-Futtermittel ausreichend sein?

„Die Cobalt-Versorgung durch Standard-Futtermittel ist oft unzureichend für optimale Biogasproduktionsprozesse, besonders wenn Futtermittel mit geringeren Zusätzen verwendet werden. Eine gezielte Supplementierung kann erforderlich sein, um eine ausreichende Cobalt-Versorgung sicherzustellen.“

Welche Rolle spielt die Analyse von löslichem Cobalt?

„Die Analyse von löslichem Cobalt ermöglicht eine präzise Bewertung der tatsächlich verfügbaren Cobalt-Mengen für die Methanogenese. Dies ist entscheidend für die gezielte Optimierung der Spurenelementversorgung in Biogasanlagen.

Wie kann die Löslichkeit von Cobalt im Biogas-Prozess optimiert werden?

„Die Löslichkeit von Cobalt kann durch Chelatisierung und die Anpassung des pH-Werts im Biogasreaktor optimiert werden. Auch die Vermeidung von übermäßigen Schwefelverbindungen kann helfen, die Verfügbarkeit von Cobalt zu verbessern.“

Schlussfolgerung und Zusammenfassung

Die Löslichkeit von Cobalt im Biogas-Prozess ist ein entscheidender Faktor für die Effizienz und Stabilität der Methanproduktion. Eine adäquate Versorgung mit löslichem Cobalt unterstützt die mikrobielle Aktivität und fördert einen reibungslosen Ablauf des Biogas-Prozesses. Durch die Anwendung wissenschaftlicher Methoden zur Analyse und Optimierung der Cobalt-Löslichkeit können Biogasanlagenbetreiber ihre Produktion steigern und die Wirtschaftlichkeit ihrer Anlagen verbessern. Die fortlaufende Forschung und die Entwicklung neuer Technologien versprechen weitere Fortschritte in der Nutzung von Cobalt und anderen Spurenelementen, um die Biogasproduktion nachhaltiger und effizienter zu gestalten.

Read More